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Introduction

Discontinuities are useful for dealing with uncertainties and
perturbations in control and observation: Sliding Mode
control, switching control, hybrid control, ...

A possible explanation: Discontinuities are simple models
of a large class of signals and help in the estimation and
compensation of uncertainties and perturbations.

Objective:

Illustrate this in three control/estimation problems.
Some lessons learned from simple bioprocesses and how
discontinuities can help in their solution.
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Introduction

Estimation of states and (unknown) inputs (e.g. reaction
rates, faults, ...) is an important topic.

Challenge: input signals do not have a finite dimensional
model ⇒ continuous observers can only approximately
estimate them, using:

High Gains, or
Finite dimensional signal models ⇒ increases the observer
dimension.

But an Observer with discontinuous output injection term
solves exactly the problem for the class of Lipschitz
continuous inputs! ⇒ Simple Observer.
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Problem formulation

Nonlinear (second order) system [Moreno and Dochain, 2013]

ż1 = g1(z1, z2, u)

ż2 = g2(z1, z2, u)

y = h(z1, z2)

state: z = [z1, z2] ∈ Z ⊆ R2

unknown input: u ∈ U ⊂ R.

Z, U compact and connected.

gi(z1, z2, u) (i = 1, 2), h(z1, z2) smooth functions.

Measured variable: y

Problem: Using y estimate robustly and in finite time both
z and u.
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Model extension and Observability

Assumption: u (t) Lipschitz continuous, i.e. |u̇ (t)| ≤ α.

State Extension: z3 = u, ż3 = u̇ = g3 (t), where g3 (t) is
unknown, integrable and bounded, i.e. |g3 (t)| ≤ α,

Assumption: Strong Observability. i.e. The observability
map

O (z) =

 h (z)
Lgh (z)
L2
gh (z)

 =

 y
ẏ
ÿ


invertible,
independent of u̇.

⇔ Observability of (z1, z2) for any unknown u +
”observability” of u.
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State Extension: z3 = u, ż3 = u̇ = g3 (t), where g3 (t) is
unknown, integrable and bounded, i.e. |g3 (t)| ≤ α,

Assumption: Strong Observability. i.e. The observability
map

O (z) =

 h (z)
Lgh (z)
L2
gh (z)

 =

 y
ẏ
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ẏ
ÿ
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Observability form

With transformation x = O (z)

ẋ1 = x2

ẋ2 = x3

ẋ3 = K (x) + U (x, u̇)

y = x1 ,

K (x) known term,

U (x, u̇) uncertain term, depending on unknown signal
u̇ = g3 (t).

Assumptions ⇒ |U (x, u̇)| ≤ µ.

Problem: Using y estimate robustly and in finite time x.
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ẋ2 = x3
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Solvability of the problem: Discussion

For a continuous observer is impossible to estimate z and u.

Reason: The class of signals |u̇ (t)| ≤ α is too large!
(infinite dimensional).

You need a finite dimensional model of u for convergence
→ complex observer!

But a discontinuous observer can → Magic of discontinuity!
→ simple observer

Discontinuity is a simple model of a large class of signals!
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Observer with discontinuous injection

˙̂x1 = −Lk1 bx̂1 − x1e
2
3 + x̂2

˙̂x2 = −L2k2 bx̂1 − x1e
1
3 + x̂3

˙̂x3 = −L3k3bx̂1 − x1e0 +K (x̂)

ŷ = x̂1

bzep = |z|p sign (z)

Estimates x in finite time for all |u̇ (t)| ≤ α.

Gains k1 > 0, k2 > 0 and k3 > 0, L > 0 appropriately
selected.

Critical term: sign function bx̂1 − x1e0.

Structure borrowed from Levant’s differentiator (A. Levant
2003).

Structure similar to a High Gain Observer (HGO).
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ŷ = x̂1

bzep = |z|p sign (z)

Estimates x in finite time for all |u̇ (t)| ≤ α.

Gains k1 > 0, k2 > 0 and k3 > 0, L > 0 appropriately
selected.

Critical term: sign function bx̂1 − x1e0.

Structure borrowed from Levant’s differentiator (A. Levant
2003).

Structure similar to a High Gain Observer (HGO).

Discontinuous Control Jaime A. Moreno UNAM 13



Observer with discontinuous injection

˙̂x1 = −Lk1 bx̂1 − x1e
2
3 + x̂2

˙̂x2 = −L2k2 bx̂1 − x1e
1
3 + x̂3

˙̂x3 = −L3k3bx̂1 − x1e0 +K (x̂)
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Observer in original coordinates

 ˙̂z1
˙̂z2
˙̂u

 =

 g1 (ẑ1, ẑ2, û)
g2 (ẑ1, ẑ2, û)

0

+

− J−1
O (ẑ1, ẑ2, û)

 Lk1 bŷ − ye
2
3

L2k2 bŷ − ye
1
3

L3k3 bŷ − ye0


ŷ = h (ẑ1, ẑ2)

J−1
O (ẑ1, ẑ2, û) inverse of the Jacobian matrix of observability

map O (ẑ1, ẑ2, û).
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Unknown input estimation in a bioreactor

R :


Ẋ (t) = µ (S)X −DX ,

Ṡ (t) = −µ(S)X
Y +D (Sin (t)− S) ,

y = X

X ≥ 0 biomass, S ≥ 0 substrate concentrations,

µ : R+ → R+ specific growth rate, given by a Monod law

µ (S) =
µ0S

S +KS
= µ0r (S)

D ≥ 0 dilution rate,

Sin (t) ≥ 0 unknown input substrate concentration
|Ṡin| ≤M ,

Y > 0 yield coefficient.

Discontinuous Control Jaime A. Moreno UNAM 16



Observer I


˙̂
X
˙̂
S
˙̂
Sin

 =

 µ(Ŝ)X̂ −DX̂
−µ(Ŝ)X̂

Y +D
(
Ŝin − Ŝ

)
0

+

− J−1
O

(
X̂, Ŝ, Ŝin

)


Lk1

⌊
X̂ −X

⌉ 2
3

L2k2

⌊
X̂ −X

⌉ 1
3

L3k3 sign
(
X̂ −X

)
 , (1)

Discontinuous Control Jaime A. Moreno UNAM 17



Observer II

where

J−1
O =

 1 0 0

− (µ(S)−D)
µ′(S)X

1
µ′(S)X 0

η2(µ(S)−D)−η1
(µ′(S)X)2D

, η2(X,S)

(µ′(S)X)2D
, 1

µ′(S)XD



η1 (X, S, Sin) =
(
D (Sin − S)− 2µ(S)X

Y

)
×

(µ′ (S))2X + (µ (S)−D)2 µ′ (S)X

η2 (X, S) = − 1
Y µ(S)µ′′ (S)X2 −DSµ′′ (S)X+

− 1
Y (µ′ (S))2X2 + 2µ (S)µ′ (S)X − 3Dµ′ (S)X .

Discontinuous Control Jaime A. Moreno UNAM 18
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Simulation results

Parameters: Y = 1
2 , µ0 = 1

5 , KS = 2, D = 1
2µ0,

Initial Conditions: X0 = 100, S0 = 50.

Observer gains: k1 = 13.2, k2 = 50.82, k3 = 13.31, L = 2.

Unknown input
Sin (t) = 300 + 30 sin (0.4πt) + 30 sin (0.2πt) + 10 sin (πt).

Sin (t) requires a model of dimension 7.

Discontinuous Control Jaime A. Moreno UNAM 20



Discontinuous observer
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HG observer
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Introduction

Construction of observers is tied to Observability
(detectability) properties.

Local observability is compatible with Global
unobservability.

Observers converge locally but not globally and there is no
global observer.

This phenomenon seems to be common: e.g. chemical
reactors, electrical machines (sensorless),...

A possible solution in case of a finite number of
indistinguishable trajectories: reconstruct all possible ones
⇒ Discontinuous injection term.

Initial work: J. Moreno and J. Alvarez, 2013.
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An unobservable bioreactor

R :


Ẋ (t) = µ (S)X −DX ,

Ṡ (t) = −µ(S)X
Y +D (Sin (t)− S) ,

y = X

(2)

µ : R+ → R+ non-monotonic, Haldane law

µ (S) =
µ0S

S2

KI
+ S +KS

(3)

At S∗ =
√
KSKI achieves its maximum value µ∗ = µ (S∗).

D ≥ 0 dilution rate, Y > 0 yield coefficient,

Sin (t) ≥ 0 unknown input substrate concentration,

Problem: Using (X, D) estimate (S, Sin).
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Non monotonic reaction rate

Figure : Haldane Law
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Observability analysis

Monotonic growth rate µ(s)

Observability map globally invertible.
System globally Strongly observable + input observable.
Global observer for S and Sin exists.

Non-Monotonic growth rate µ(s)

Observability map locally invertible a.e. but not globally.
Using a (novel) method to perform an indistinguishability
analysis we conclude:
System locally Strongly observable a.e. but not globally.
Global observer for S and Sin does not exist, but local
observers exist a.e.
For every pair of measured signals (D (t) , X (t)) in any
time interval t ∈ [0, T ], there exist exactly two
indistinguishable trajectories!
System is not detectable.
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Indistinguishable Trajectories
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Multivalued observers

For (unobservable) systems with a finite number of
indistinguishable trajectories:

A Global observer does not exist.

Observers may work locally, but not globally.

Multivalued Observer: Estimate all possible
indistinguishable trajectories corresponding to the
measured variables.

Possible with discontinuous injection terms!
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A bivalued observer for the bioreactor

˙̂
X (t) = −k1φ1 (eX) + µ̂X −DX , X̂ (t0) = X̂0 ,

˙̂µ (t) = −k2Xφ2 (eX) , µ̂ (t0) = µ̂0 ,

Ŝ1 (t) =
KI (µ0 − µ̂ (t))− ξ

2µ̂ (t)

Ŝ2 (t) =
KI (µ0 − µ̂ (t)) + ξ

2µ̂ (t)
,

ξ =

√
K2
I (µ0 − µ̂ (t))2 − 4KSKI µ̂2 (t) ,

eX = X̂ −X,

φ1 (eX) = γ1 deXc
1
2 + γ2eX , γ1 > 0 , γ2 ≥ 0 ,

φ2 (eX) =
γ2

1

2
deXc0 +

3

2
γ1γ2 deXc

1
2 + γ2

2eX ,
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Bivalued Observer Behavior
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SISO Regulation and Tracking Problem

SISO smooth, uncertain system

ż = f (t, z) + g (t, z)u, σ = h (t, z) ,

z ∈ Rn, u ∈ R, σ ∈ R: sliding variable/tracking error.

f (t, z) and g (t, z) and n uncertain.

Control objective: to reach and keep σ ≡ 0 in finite time.

Relative Degree ρ w.r.t. σ is well defined, known and
constant.

Reduced (Zero) Dynamics asymptotically stable (by
appropriate selection of σ).
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The basic DI

Defining x = (x1, ..., xρ)
T = (σ, σ̇, ..., σ(ρ−1))T , σ(i) = di

dti
h (z, t)

The regular form

∑
T :


ẋi = xi+1, i = 1, ..., ρ− 1,
ẋρ = w (t, z) + b (t, z)u, x0 = x (0) ,

ζ̇ = φ(ζ, x) ζ0 = ζ(0) ,

0 < Km ≤ b (t, z) ≤ KM , |w (t, z)| ≤ C .

Reduced Dynamics Asymptotically stable:

ζ̇ = φ(ζ, 0) , ζ0 = ζ(0) ,

The basic Differential Inclusion (DI)∑
DI :

{
ẋi = xi+1, i = 1, ..., ρ− 1,
ẋρ ∈ [−C, C] + [Km, KM ]u .
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Higher Order Sliding Mode (HOSM)
Control Solution

Bounded memoryless feedback controller

u = ϑρ(x1, x2, · · · , xρ) ,

A continuous controller ϑρ cannot solve the problem!

Reason: The class of perturbations/uncertainties is too
large.

ϑρ necessarily discontinuos at x = 0 for robustness [−C, C].

Possible explanation: The discontinuity is a simple model
for the class of uncertainties/perturbations.

Renders x1 = x2 = · · · = xρ = 0 finite-time stable.

Motion on the set x = 0 is ρth-order sliding mode.

Drawback: Chattering!
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Discontinuous Integral Controller

Homogeneous Discontinuous Integral control∑
T :

{
ẋi = xi+1, i = 1, ..., ρ− 1,
ẋρ = u+ w (t) , x0 = x (0) ,

|ẇ (t, z)| ≤ C .

u = k1ϑ1(x1, x2, · · · , xρ) + xρ+1 ,

ẋρ+1 = k2ϑ2(x1) ,

ϑ1(·) homogeneous,

ϑ2(·) homogeneous of degree 0 (discontinuous!),

Homogeneity:

ϑ1

(
εr1x1, ε

r2x2, . . . , εxrρ
)

= εδϑ1 (x1, x2, . . . , xρ) ∀ε > 0
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Block Diagram of Discontinuous I-Control

ϑ2(σ)
∫

Plant

ϑ1(x) Observer

υ u y σ−

r(t)w(t)

x

Discontinuous Control Jaime A. Moreno UNAM 42



Virtues of Discontinuous Integral Control

Continuous control signal u(t).

Continuous (ϑ2) I-Control rejects/tracks constants
|ẇ (t, z)| = 0.

Continuous controllers require a model of the
references/perturbations to compensate them ⇒ Internal
Model Principle.

Discontinuous (ϑ2) I-Control rejects/tracks Lipschitz
perturbations/references! |ẇ (t, z)| ≤ C.

Discontinuity is a simple model for the class of
perturbations/references.

Requires only x and not ẋρ.

xρ+1 estimates perturbation w ⇒ for t ≥ T ,
xρ+1(t) = −w(t).

For ρ = 1: Super-Twisting!

Output feedback: using continuous/discontinuous observer!
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|ẇ (t, z)| = 0.

Continuous controllers require a model of the
references/perturbations to compensate them ⇒ Internal
Model Principle.

Discontinuous (ϑ2) I-Control rejects/tracks Lipschitz
perturbations/references! |ẇ (t, z)| ≤ C.
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xρ+1 estimates perturbation w ⇒ for t ≥ T ,
xρ+1(t) = −w(t).

For ρ = 1: Super-Twisting!

Output feedback: using continuous/discontinuous observer!

Discontinuous Control Jaime A. Moreno UNAM 43



Virtues of Discontinuous Integral Control

Continuous control signal u(t).

Continuous (ϑ2) I-Control rejects/tracks constants
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Discontinuous (ϑ2) I-Control rejects/tracks Lipschitz
perturbations/references! |ẇ (t, z)| ≤ C.

Discontinuity is a simple model for the class of
perturbations/references.

Requires only x and not ẋρ.

xρ+1 estimates perturbation w ⇒ for t ≥ T ,
xρ+1(t) = −w(t).

For ρ = 1: Super-Twisting!

Output feedback: using continuous/discontinuous observer!
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Magnetic Suspension System

Figure : ECP Model 730: Magnetic Suspension System
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Magnetic Suspension System

ẋ1 = x2

ẋ2 = − k
m
x2 −

aL0

2m

x2
3

(a+ x1)2
+ g

ẋ3 =
1

L(x1)

(
−Rx3 + aL0

x2x3

(a+ x1)2
+ u

)
L(x1) = L1 +

aL0

a+ x1

x1 = y ∈ R+: position of the disc,

x2 = ẏ ∈ R: velocity,

x3 = Ic: current in the coil,

u = V : voltage.
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Discontinuous I-Controller

Control Objective: Position Tracking error
e1 = y − r(t) ≡ 0 after finite time.

Tracking Error Dynamics

ė1 =e2

ė2 =e3

ė3 =− k3λ
− d

4+2d

⌈
de3c

4
4+2d + k

4
4+2d

2 λ
− 4d

(4+d)(4+2d) de2c
4

4+d +

k
4

4+2d

2 k
4

4+d

1 λ
− 12d

(4+d)(4+2d) e1

⌋ 4+3d
4

+ z + w(t),

ż =− kIλ de1c
4+4d

4 .

Homogeneity degree: d ∈ [−1, 0]
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Euler’s integration method of fixed-step, sampling time
1× 10−4[s].

Gains: k3 = 21, k2 = 7, k1 = 3, kI = 2

d = 0: Lineal controller. λ = 100.

d = −0.5. Continuous Nonlinear I-Controller. λ = 2

d = −1: Discontinuous I-controller. λ = 2
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Experiment 1: Position Tracking
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Experiment 1: Tracking error
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Experiment 1: Velocity
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Experiment 1: Current
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Experiment 1: Control Signal
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Exp. 2: Position with varying mass
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Experiment 2: Regulation error

l
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Experiment 2: Control Signal
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Conclusions

Discontinuities seem to be simple models for a large class of
signals.

They lead to simple solutions for robust control and
observation problems.

Many issues to be studied:

Effect of Noise.
Implementation: Explicit discretization/Implicit
Discretization.
Generalizations.

Extensions and uses of Multivalued Observers.

We can learn from simple problems and systems!

Discontinuous Control Jaime A. Moreno UNAM 58



Conclusions

Discontinuities seem to be simple models for a large class of
signals.

They lead to simple solutions for robust control and
observation problems.

Many issues to be studied:

Effect of Noise.
Implementation: Explicit discretization/Implicit
Discretization.
Generalizations.

Extensions and uses of Multivalued Observers.

We can learn from simple problems and systems!

Discontinuous Control Jaime A. Moreno UNAM 58



Conclusions

Discontinuities seem to be simple models for a large class of
signals.

They lead to simple solutions for robust control and
observation problems.

Many issues to be studied:

Effect of Noise.
Implementation: Explicit discretization/Implicit
Discretization.
Generalizations.

Extensions and uses of Multivalued Observers.

We can learn from simple problems and systems!

Discontinuous Control Jaime A. Moreno UNAM 58



Conclusions

Discontinuities seem to be simple models for a large class of
signals.

They lead to simple solutions for robust control and
observation problems.

Many issues to be studied:

Effect of Noise.
Implementation: Explicit discretization/Implicit
Discretization.
Generalizations.

Extensions and uses of Multivalued Observers.

We can learn from simple problems and systems!

Discontinuous Control Jaime A. Moreno UNAM 58



Conclusions

Discontinuities seem to be simple models for a large class of
signals.

They lead to simple solutions for robust control and
observation problems.

Many issues to be studied:

Effect of Noise.
Implementation: Explicit discretization/Implicit
Discretization.
Generalizations.

Extensions and uses of Multivalued Observers.

We can learn from simple problems and systems!

Discontinuous Control Jaime A. Moreno UNAM 58



Conclusions

Discontinuities seem to be simple models for a large class of
signals.

They lead to simple solutions for robust control and
observation problems.

Many issues to be studied:

Effect of Noise.
Implementation: Explicit discretization/Implicit
Discretization.
Generalizations.

Extensions and uses of Multivalued Observers.

We can learn from simple problems and systems!

Discontinuous Control Jaime A. Moreno UNAM 58



Conclusions

Discontinuities seem to be simple models for a large class of
signals.

They lead to simple solutions for robust control and
observation problems.

Many issues to be studied:

Effect of Noise.
Implementation: Explicit discretization/Implicit
Discretization.
Generalizations.

Extensions and uses of Multivalued Observers.

We can learn from simple problems and systems!

Discontinuous Control Jaime A. Moreno UNAM 58



Conclusions

Discontinuities seem to be simple models for a large class of
signals.

They lead to simple solutions for robust control and
observation problems.

Many issues to be studied:

Effect of Noise.
Implementation: Explicit discretization/Implicit
Discretization.
Generalizations.

Extensions and uses of Multivalued Observers.

We can learn from simple problems and systems!

Discontinuous Control Jaime A. Moreno UNAM 58



Thanks

I thank to the students

Emmanuel Cruz-Zavala, Tonametl Sanchez, Fernando
Lopez-Caamal, Angel Mercado, ...

colleagues
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Multivalued finite-time observers for a class of nonlinear systems.

In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), 3045–3050.

doi:10.1109/CDC.2017.8264103.

Discontinuous Control Jaime A. Moreno UNAM 71



Bibliography XII

Moreno, J.A. and Dochain, D. (2013).

Finite time converging input observers for nonlinear second-order
systems.

In 52nd IEEE Conference on Decision and Control, 3554–3559.

doi:10.1109/CDC.2013.6760429.
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