

APRIL 2019

The Autonomous Industrial Plant – Future of Process Engineering, Operations and Maintenance

Plenary at IFAC DYCOPS 2019 in Florianópolis, Brazil, 25 April 2019

Alf Isaksson, ABB Corporate Research, Västerås, Sweden

The world is changing at unprecedented speed

Technology influences the future of how we...

Slide 2

Source: BNEF 2018, Gartner 2018, IFR 2018, UN World Urbanization Prospects 2018, BNEF Electric Vehicle Outlook 2018 ¹Internet of Things; ²Compound annual growth rate; ³Electric Vehicles Note: trends development 2018 – 2030; installed IoT devices 2018 – 2025

Key challenge: decoupling economic growth from environmental impact

Two key levers: Increasing Productivity/Efficiency and lowering carbon footprint

Facts about ABB

Future Automation

- Integration of power and automation
- The modelling complexity
- Modular Automation
- AI for Manufacturing Industries
- Transition into Autonomous Systems
- Conclusions

Pioneering tec	chnology leader in digital	industries
	~\$410 bn market	
	~\$410 bn market ~\$29 bn revenues	
34%	~\$410 bn market ~\$29 bn revenues 31%	35%

R&D at ABB – facts and figures

©ABB May 2, 2019 | Slide 6

Revolutions that are changing the industry

Digitalization, emobility, automation, and robotization

Energy revolution

The fourth industrial revolution

eMobility revolution

Utilities

Industry

Transport & Infrastructure

ABB Ability[™]: brings industry leading digital solutions to our customers

Facts about ABB

Future Automation

- Integration of power and automation
- The modelling complexity
- **Modular Automation**
- AI for Manufacturing Industries
- Transition into Autonomous Systems
- Conclusions

Market Trends

The Five Major Trends that Manufacturers Must Follow

Today's automation systems

Automation Network and Hierarchy

Future automation system architecture

Trade-off between edge and cloud

OPTIMAX® PowerFit

Optimizing control of Virtual Power Pools

Task

- Aggregate many small production units and treat them like one big power plant
- Exploit multiple forms of energy (e.g. el and heat) and storages

Solution

- Build overall plant model (exploiting Modelica multiphysics)
- Formulate optimizing control task as mathematical program
- Online optimization of set points and plant schedules

Digitalization enables the interconnection of power generation, consumption, storage and production

ABB Ability[™]

Industry-leading digital solutions built on a common set of standard technologies

Facts about ABB

Future Automation

Integration of power and automation

- The modelling complexity
- **Modular Automation**
- AI for Manufacturing Industries
- Transition into Autonomous Systems
- Conclusions

End of Isolated Solutions

Balancing Between Control Systems

Industrial demand side management in pulp & paper

Coordination of production planning and energy management

Mechanical pulp production

- Thermo-mechanical pulp (TMP) production is highly integrated with other parts of paper plant
- Most energy consuming production steps are moved to low cost times
- Paper output of plant is not reduced

Spot Market Hourly Prices (1st week, December 2014)

Industrial demand side management in pulp & paper

Evaluating market opportunities for thermo mechanical pulping (TMP) mills

Case study with TMP mill

- Real world plant and production data of a Nordic paper mill
- Different scenarios evaluated

Scenario	Energy cost	Allowed pulp storage levels
S0	No	20%-80%
S1	Yes	20%-80%
S2	Yes	5%-95%

Facts about ABB

Future Automation

Integration of power and automation

The modelling complexity

Modular Automation

AI for Manufacturing Industries

Transition into Autonomous Systems

Conclusions

Modelling vision – Automation of automation

Automatically generate models for control and optimization from CAD

Process graphics in 800xA

Slide 21

Virtual commissioning

Commissioning using a (simulated) virtual reality

Manufacturing: Mechanical objects up to cells, lines, incl. 2D or 3D simulation are coupled with automation systems (hardware or software in the loop)

Process automation more difficult due to lack of easily available process models. Currently piloting simulation models derived from P&I diagram to be used for FAT.

Learning models from historic data

Finding intervals that are useful for modelling

- Original method for system identification using single input – single output data
- Less than 5 % of normal operating data found useful for identification
- Implementation in ABB Ability[™] Manufacturing Operations Management (MOM) for MIMO process data
- Can (historic) data be used also for applications learning decision models rather than process models? For example
 - Alarm management
 - Production scheduling
 - Supply-chain optimization

Facts about ABB

Future Automation

Integration of power and automation

The modelling complexity

Modular Automation

AI for Manufacturing Industries

Transition into Autonomous Systems

Conclusions

Modular Automation

Background - Why Modular Plants?

Market situation and challenges

- Highly competitive
- Volatile markets
- Shorter product lifecycle required faster time-to-market.

Challenges in process industries

- Flexible, but efficient, modular plant concepts.
- Short time span between development and production.
- Numbering-up instead scale-up

Modular Automation

Targeted industries

Pharmaceutical industries

Biotech industries

Fine chemical industries

Food and Beverage

Pilot project since 2014

Together with Bayer, INVITE, Helmut-Schmidt University and TU Dresden

- Several modules engineered using our prototype "Module Designer" and "Orchestration Designer" with Freelance controller for modules and System 800xA as supervisory control system
- First demonstrated at ACHEMA Fair in Frankfurt June 2018

Concepts on:

- System architecture
- Module configuration
- Module integration into an orchestration system
- Automatic generation of operation and orchestration environment
- Operator workplace

Facts about ABB

Future Automation

Integration of power and automation

The modelling complexity

Modular Automation

AI for Manufacturing Industries

Transition into Autonomous Systems Conclusions

©ABB May 2, 2019 | Slide 28

Definitions of Artificial Intelligence

Many different definitions available

Working definition:

"Al is the science of making machines do things that require intelligence if done by men" (Minsky, 1968)

Neglected alternatives:

- A: 1: A branch of computer science dealing with the simulation of intelligent behavior in computers
 2: The capability of a machine to imitate intelligent human behavior (Meriam Webster)
- B: "Artificial Intelligence is the study of mental faculties through the use of computational models" (Charniak, McDermott Introduction to Artificial Intelligence, 1985)
- C: (In this view), the problem of AI is to describe and build agents that receive percepts from the environment and perform actions. (Russel, Norvig, Artificial Intelligence, A Modern Approach, 1995)

There is not one definition and no clear and generally agreed structuring of the field!

Branches of Artificial Intelligence

Overview of our structuring

Knowledge & Inference Emulate expert decisions and expert behavior Pre-Requisites: Capturing expert knowledge, Contextual- knowledge	Problem Solving Find solutions automatically for problems like packing problems or design tasks Pre-Requisites: Precise problem definition, heavy modeling task	State & Action Planning Find a good or optimal sequence of actions to reach a predefined goal Pre-Requisites: Modelling of planning problem	Natural Language Processing Interpret & process human natural languages for computer-human interaction Pre-Requisites: Signal processing, semantics or lots of data
Learning Probabilities Derive probability distributions from data for predictions & risk analysis Pre-Requisites: Prior experiences, informative data	Machine Perception Deduce real world aspects by using sensor input information Pre-Requisites: Data models, good quality sensing, dealing with uncertainty	Machine Learning Create the ability to perform tasks without explicitly programming a machine Pre-Requisites: Computation powe models, labeled data	er, amount of data, good

The branches of AI are not independent and have many overlaps

AI – a paradigm shift in ease of installation and use of robots

From programming to teaching and learning

Mainstream AI going beyond image recognition

First it was all games and fun

©ABB

May 2, 2019

1997 IBM Deep Blue – Kasparov Result: 3½-2½	2016 Google AlphaGo – Lee Sedol Result: 4-1	2019 Google AlphaStar – "MaNa" ¹ Result: 5-0
State Space Complexity	State Space Complexity	State Space Complexity ¹
10120	10¹⁷⁴	10 ¹⁶⁸⁵
 Thousands of rules and heuristics Handcrafted by strong human players Try to account for every eventuality 	 Knows nothing except basic rules Learns by Self-Play against itself Highly dynamic, "unconventional" style 	 Raw data fed to a deep neural network 1st learned from footage of human games 2nd played against a league of AI players

Complexity of the industrial reality

Life isn't playing a game

Well defined rules and limited states in games

Unlimited states in reality¹

Moving from a closed world to reality requires Industrial AI

May 2, 2019

Industrial AI addressing the complexity in industrial reality

Combining domain knowledge with data

Example: Remaining Useful Lifetime of Azipod® Bearings

Prescriptive service solution for marine application

Can we estimate and prolong the lifetime of an asset?

An accurate estimate of remaining useful life (RUL) for the critical component, i.e. Azipod® bearing, enables to avoid unplanned stop and maximize reliability.

- Early detection of bearing faults based on signal processing and physical models, using the resonance as well as bearing fault frequencies
- Estimation of a degradation vector based on machine learning using condition monitoring signals
- Lifetime model predicting the RUL of the Azipod® bearing as a function of operational condition (physical model) and estimated degradation vector (data driven)
- Use of the estimated RUL for an optimal maintenance planning through adaptation of operational condition

LIFETIME ESTIMATION

Machine Learning / Artificial Intelligence Projects in ABB Corporate Research Overview

Glimpse into the future

Al Assistants as unified interface to advanced analytics

Facts about ABB

Future Automation

Integration of power and automation

The modelling complexity

Modular Automation

AI for Manufacturing Industries

Transition into Autonomous Systems

Conclusions

Industrial automation has progressed for more than one century

Broader application space, going beyond classical control, move towards autonomous

What do we mean by an Autonomous System? Definition

Systems that [without manual intervention] can change their behavior in response to unanticipated events during operation are called "autonomous"

Autonomous Systems David P. Watson and David H. Scheidt at John Hopkins Applied Physics Laboratory

Remote Control and Autonomous Systems

Examples from other Industries

Autonomous Systems are appearing in various industries

Levels of autonomy

Definition from the Society of Automotive Engineers (SAE)

the lead car and centering the vehicle in the lane**. Tesla Autopilot system is considered to be an SAE level 2 system.

Academic origins of levels of autonomy

Decades of research leading up to the SAE 0..5 scale

Function Allocation (1951)

Humans Surpass Machines in the:

- Ability to detect small amounts of visual or acoustic energy
- Ability to perceive patterns of light or sound
- Ability to improvise and use flexible procedures
- Ability to store very large amounts of information for long periods and to recall relevant facts at the appropriate time
- · Ability to reason inductively
- · Ability to exercise judgment

Machines Surpass Humans in the: speed power computation replication simultaneous operations short term memory

- Ability to respond quickly to control signals, and to apply great force smoothly and precisely
- Ability to perform repetitive, routine tasks
- Ability to store information briefly and then to erase it completely
- Ability to reason deductively, including computational ability
- Ability to handle highly complex operations, i.e., to do many different things at once.

Methods for Function Allocation

Level of Automation (1978)

- 1. The computer offers no assistance: human must take all decision and actions.
- 2. The computer offers a complete set of decision/action alternatives, or
- 3. narrows the selection down to a few, or
- 4. suggests one alternative, and
- 5. executes that suggestion if the human approves, or
- 6. allows the human a restricted time to veto before automatic execution, or
- 7. executes automatically, then necessarily informs humans, and
- 8. informs the human only if asked, or
- 9. informs the human only if it, the computer, decides to.
- 10. The computer decides everything and acts autonomously, ignoring the human.

Levels & Stages of Automation (2000)

Parasuraman, Sheridan, & Wickens (2000) (2600+ citations)

Moving towards autonomous industries

Increasing the level of autonomy

ABB Application Example – Mining

Future underground mine will possibly be fully autonomous with no people underground

Swedish mining companies – Boliden and LKAB – are world leaders in automation

Comparison of "our world" with automotive

Why it is not as easy with the process domain as with automotive

Autonomous plant / factory

Autonomous key features for lifecycle phase operations (work in progress)

	Definition – Plant/Factory	Control Room Operation	Field Operation / Maintenance	Planning and Scheduling
0	No Autonomy: Humans carry out all necessary operations without assistance	Manual control of all assets. No support by automation system.	All field operator tasks executed by humans.	Manual development of plans and the corresponding schedule.
1	Operations Assistance: Automation system provides decision support for necessary operations by remote / digital assistance. Humans always responsible.	Automation of control loops during steady - state. Manual startup and shutdown of the plant. Manual execution of transitions. Alarm based notification.	Automation system notifies humans about field activities. Some tasks are automated , e.g. operating valves.	ERP plan creation on human request. Human decides when and how to execute the plans and adapts plans.
2	Automation system is in control in certain situations on request (humans pull support, e.g. for plant startup). Humans always responsible.	Automation system assisted plant startup, transition, steady-state, and shutdown. Manual fault correction supported by decision support system.	System guided field operation tasks. Humans get instructions what to do and when by decision support system.	Adaptations of plans to current situations by operator request.
3	Automation system is in control in certain situations. Plant actively alerts to issues and proposes solutions. Humans confirm.	Automated plant shutdown, startup and transition, on human request. Automatic correction of known deviations. Decision support for unexpected/unknown faults.	Most tasks required for standard operations are automated, like shutdown, startup and transition phases. Number of humans in the field heavily reduced.	Continuous feedback and re-planning in case of production deviations.
4	Autonomous operations in certain situations: automation system has full control in these situations, humans supervise actions.	Autonomous control in certain situations with automatic fault and deviation correction and avoidance.	Almost human free field operation. Only human field operation in exceptional situations.	Continuous autonomous planning and scheduling without user interaction. Detection of production deviations and re-planning. Manual schedule release.
5	Full autonomous operation in all situations. Humans may be completely absent.	Full autonomous control, fault correction and avoidance in all situations. No human supervision required.	Full autonomous field operation, no manual actions in the field necessary. No humans remain in the plant.	Autonomous development and execution of plans and schedules. Autonomous re-planning in case of production deviations. No human interaction.

Future of Autonomous Plants

Scenario Overview

Efficient Engineering: intent-based automation

Automatically turn process to automation design and simulation

Rapid Commissioning and Reconfiguration: plug & produce for complex systems

Self-integration and -configuration of components, automated testing, emerging systems

Efficient, Continuous Operation: decision-making AI

Al running operations as "world's best operator", trained on high-fidelity simulations; move beyond Al assistants

Example: optimize brownfield plant

- Increase availability: 100% available plant
- Increase productivity: from 85% to 95%
- Highest quality and security desired
- Rapid upgrade free of side-effects

The transition to autonomous systems in industry

Value proposition of autonomy

Facts about ABB

Future Automation

Integration of power and automation

The modelling complexity

Modular Automation

AI for Manufacturing Industries

Transition into Autonomous Systems

Conclusions

Conclusions

Autonomy needed along entire lifecycle of manufacturing

- First applications of Autonomous Systems in autonomous transport/vehicles (cars, metros and for ABB e.g. mining, cranes, ships and logistics)
- Standard for autonomy levels already in place for autonomous driving and emerging for shipping
- ABB is now looking at autonomy also for industrial plants
- AI and Machine Learning are key enabling technologies for Autonomous Systems
- In ABB, we have a long tradition of Machine Learning, especially for Condition Monitoring
- Industrial AI and autonomy will need combination of modelling and data based learning

Value proposition always most important consideration

Towards autonomous operations: Let's build a bridge into this future

See also: <u>www.mx3d.com</u>, using ABB robots.

Acknowledgements

The speaker is grateful to many ABB colleagues for discussions and slides.

In addition to my co-authors – Thomas Gamer, Benjamin Kloepper, Mario Hoernicke and Reinhard Bauer – I would like to thank Rüdiger Franke, Christopher Ganz, Iiro Harjunkoski, Antony Hilliard, Tomas Lagerberg, Michael Lundh, Lennart Merkert and Benedikt Schmidt.

