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• Many-body dynamic system
• Symmetries due to indistinguishable particles
• Covalent and non-covalent interactions
• Interactions can be manipulated with external fields
• Desired state
– Metastable kinetic trap
– Low-energy crystalline state

Chemistry  à Process  à Structure  à Property

Control of Self-Assembly
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“Control of self-assembly in micro- and nano-scale systems,” J. Paulson, A. Mesbah, 
X. Zhu, M. Molaro, R. Braatz, Journal of Process Control, 27, 64-75 (2015). 



Self-assembly in biological function and selection

4

NFF-CHO monomer NFF-CHO oligomers

"Design of multi-phase dynamic chemical networks,” C. Chen, J. Tan, M. C. Hsieh, T. Pan, J. T. 
Goodwin, A. K. Mehta, M. A. Grover, D. G. Lynn, Nature Chemistry, 9(8), 799-804 (2017). 



Motivation: Crystallization

• Crystalline ordered state is desired for 
– Separation (nuclear waste)
– Purification (pharmaceutical)
– Materials processing (optical and electronic properties)

• Low-energy thermodynamic ground state
• Defects can occur as kinetic traps
• Feedback can help overcome the “inherent” 

tradeoff between thermodynamics and kinetics.
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“Model identification and control strategies for batch cooling crystallizers,” 
S. Miller and J. Rawlings, AIChE Journal, 40(8), 1312-1327 (1994). 



Experimental approaches to crystallization control
• Open-loop dynamic inputs
– Linear (batch cooling crystallization)
– Toggling (switching magnetic fields)

• Closed-loop feedback
– Model-free (Direct nucleation control, PID control)
– Model-based (Population balance and MPC / Markov-state model 

and dynamic programming)
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“Feedback controlled colloidal self-assembly,” J. Juarez and M. Bevan, Advanced Functional 
Materials, 22, 3833-3839 (2012).
“Nonlinear model-based control of a semi-industrial batch crystallizer using a population balance 
modeling framework,” A. Mesbah, Z. Nagy, A. Huesman, H. Kramer, P. Van den Hoff, IEEE 
Transactions on Control Systems Technology, 20, 1188-1201 (2012).



Case Studies
Colloidal Crystallization Salt Crystallization
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FBRM

ATR-FTIR

Temperature



Challenges for Control of Self-Assembly

C6 = 1.76
Ψ6 = 0.04

C6 = 5.15
Ψ6= 0.33

C6 = 5.55
Ψ6 = 0.99

• large state dimension
• stochastic and nonlinear dynamics
• limited actuation 
• limited sensors for real-time measurements
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Methodology

1. Selection of variables that characterize the aggregate state of the 
system and can be measured in real time

2. Application of machine learning to develop an empirical model of 
the system dynamics in terms of the evolution of the selected 
aggregate state metrics 

3. Application of dynamic programming to obtain optimal state-
feedback control policies

C. Oguz and M. A. (Grover) Gallivan. Optimization of a thin film deposition process using a 
dynamic model extracted from molecular simulations. Automatica, 44(8): 1958–1969 (2008). 9



• Low-defect metamaterials needed for optoelectronics
• Self-assembly has a greater potential for scale-up (compared 

to top-down placement)
• Challenge
• defects form as kinetic traps

• Idea
• use feedback to intervene… 

only when necessary

Motivation: Colloidal Crystallization
Rapid high-throughput production of nanostructured materials is challenging.

van Blaaderen et al. Nature 2003, 
Velev et al. Langmuir 2009



Colloidal assembly batch process

• Quadrapole electrode
• ~300 SiO2 ~3 μm diameter spheres in water
• Quasi 2-D assembly (voltage < 2 V)
• kT-scale interactions enable reversible assembly
• Particle-field interactions are frequency dependent
– Pull toward center at 1 MHz AC
– Push away from center at 0.1 MHz AC

• Real-time monitoring with optical video 
microscopy
– Image processing to extract particle locations

AC electric field exerts forces on the particles
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Bevan lab at JHU



Feedback control system
Real-time measurement enables immediate correction to the process

Process
Colloidal 
Assembly

Actuator
Voltage

Sensor
Optical video 
microscopy

Loop is repeated each 
time a new 

measurement is taken. 
Controller

Desired structure
Order parameter
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Many-body simulation

• Particle-field interactions
– Induced dipole in an inhomogeneous field

• Particle-particle interactions
– Electrostatic
– Dipole-dipole

• Stochastic 
– Random Brownian motion due to solvent fluctuations

• Integrate the equation of motion on each particle
• Model parameters: geometry and material properties

“Interactions and microstructures in electric field mediated colloidal assembly,” 
J. Juarez and M. Bevan, Journal of Chemical Physics, 131, 134704 (2009).

Classical mechanics describes forces and particle motion
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Reduced-order state

• Direction of force on particles can be changed via frequency
• Free energy surfaces calculated from long-time sampling of experiments
• C6 is an order parameter: a measure of crystallinity

C6 = 6 is a hexagonal structure

Due to symmetries, the state dimension can be reduced. 

1 MHz 0.1 MHz
1 MHz
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Implementation of model-free control

• Switch between two controllers
– assembly
– disassembly

• Controller gain K is chosen empirically
• Proportional control: steady state error

Corrective action is proportional to the error in C6

[V ,ω ]=
−KΔ C6 ,0.1MHz Δ C6 < −0.25

KΔ C6 ,1.0MHz Δ C6 ≥ −0.25

⎧
⎨
⎪

⎩⎪

Δ C6 = C6 des
− C6 meas

K = 4Vpp

Juarez and Bevan, Adv. Fun. Matl. (2012) 16



Markov state model

• Discrete state space S, action space A, and time T:
– C6 = [0,6] into 120 states
– ψ6 = [0,1] into 50 states
– Transition time: Δt = 100 s
– A = {0.1V, 0.2V, 0.3V, 0.95V}, V=2.0 volts 

• Markov transition matrix P(a):
– P(a)ij: probability for the system to be in state j          

from state i, after transition time Δt, given action a
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Use detailed simulation to learn reduced-order model

“The construction and application of Markov state models for colloidal self-assembly process control,” 
X. Tang, M. Bevan, M. Grover, Molecular Systems Design and Engineering, 2, 78-88 (2017).

C6

ψ6



Initial 
sampling Clustering

Resampling

MSM 
construction

Controller 
design

Control
evaluation
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Model-based control
At each point in time, apply the voltage to best achieve the long-term objective.
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Ji(x) = E c(xt ,ut )
t=i

H−1

∑ + h(xH ) | xi = x
⎧
⎨
⎩

⎫
⎬
⎭

 

c(xt ,ut ) is cost function at stage t, h(xH ) is terminal cost

Define Ji
*(x) = inf

u∈U
Ji(x),  u*(x) = arg inf

u∈U
Ji(x){ } = arg Ji

*(x)

Bellman’s Principle:
  

J *
i(x) = inf

u∈U
E[c(x,u,w)]+ E[J *

i+1( f (x,u,w))]{ }
J *

H (x) = E[h(xH )]

Optimal control:

J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer, 1999, NY.
“Optimal design of a colloidal assembly process,” Y. Xue, D. Beltran-Villegas, X. Tang, M. Bevan, M. 
Grover, IEEE Transactions on Control Systems Technology, 22(5), 1956-1963 (2014).



Optimal policy for colloidal control

� Markov Decision Process (MDP)
¡ Characterized by {T, S, A, Pa}

� Objective function: infinite-horizon MDP

� Dynamic programming with policy 
iteration

  

Ju(x) = E{ γ k R(xk ,uk )
k=0

∞

∑ }

R(xk ,uk ) =ψ 6
2

γ = 0.99
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Relax assembly only when necessary to heal defects

X. Tang, B. Rupp, Y. Yang, M. A. Grover, and M. A. Bevan, “Optimal feedback 
controlled assembly of perfect crystals,” ACS Nano, 10(7), 6791–6798 (2016). 



Physical interpretation

• Free energy landscape shows equilibrium
• Apply high voltage to fluid for rapid condensation
• In defected crystal state, apply lower voltage to heal 

the defect

1 2 3

4 5 6

Partially melt any defected crystals
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Results in Brownian Dynamics simulation

• Realizations that travel through a grain 
boundary state are most likely to fail

• Stochastic nature is highly significant
• After 1000 s, most have achieved 

crystalline state

Assembly is achieved for 93%, compared to 62% for quench
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Experimental results
Assembly is achieved  for 100 out of 100 cases

• Optimal feedback policy facilitates rapid assembly
• Similar (but better) performance compared to 

simulation
• Some parameters shift from BD to experiment
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Control actions
The system is stochastic, so each trial is different.

Only two out of these ten trials required intervention. 24
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Motivation: salt crystallization

• U.S. Department of Energy cleanup
– Remove, vitrify, and re-encase
– Motivates research on separations operations

TANK FARM C UNDER CONSTRUCTION (HANFORD SITE, WA)

56 million gallons of rad. waste stored in 177 tanks

Nuclear waste separation
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Lab crystallization system

CRYSTALLIZATION
VESSEL

ATR-FTIR

FBRM

TEMPERATURE

(Na3NO3SO4· H2O)
DARAPSKITE

waste simulant: 

NaNO3 and NaSO4 in water

DATA ACQUISITION
AND CONTROL
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Experimental results
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Achieve target at final time
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Visualization of the experiments

(Na3NO3SO4· H2O)
DARAPSKITE



1. Selection of Aggregate Variables 
Colloidal Crystallization

time time

local order parameter: C6
global order parameter: Ψ6

total crystal mass: m
total crystal number: n

t0 tf t0 tf

tf tf

t0

Salt Crystallization

t0

m

n

C6

Ψ6 30



Discretize the space, time, actions
Construct a semi-empirical deterministic 
mapping from experimental data

2. Learning the Dynamics

tf tf

t0 t0

mC6

Colloidal Crystallization Salt Crystallization

Discretize the space, time, actions
Construct probability transition 
matrices from simulated data

transition 
probability
Pi,j(u)

deterministic 
model
F(n,m,u)

nΨ6

C6

Ψ6

m

n 31



3. Control Policy Calculation

transition 
probability
Pi,j(u)

deterministic 
model
F(n,m,u)

C6 m

n

Colloidal Crystallization Salt Crystallization

Ψ6

Calculate state feedback policy using dynamic programming

C6

Ψ6

u
m

n
32



Conclusions
• Optimal feedback control of self-assembly is feasible
• Model-based optimal control promises to optimize self-

assembly
• Remaining challenges include

– Robustness of policy to model error
– Selection of reduced-order state

• Technology for real-time imaging is continuing to develop
– 3D imaging with confocal microscopy
– Smaller length scales (in situ TEM)

• Optical microscopy may not be practical for manufacturing
– the insights enable us to better understand the capability and 

limitations of directed self-assembly
– simpler sensors can also be related to order-parameters in a 

manufacturing setting 33
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